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Abstract

Conservation of grizzly bears (Ursus arctos) is often controversial and the disagreement often is focused on the estimates of
density used to calculate allowable kill. Many recent estimates of grizzly bear density are now available but field-based
estimates will never be available for more than a small portion of hunted populations. Current methods of predicting
density in areas of management interest are subjective and untested. Objective methods have been proposed, but these
statistical models are so dependent on results from individual study areas that the models do not generalize well. We built
regression models to relate grizzly bear density to ultimate measures of ecosystem productivity and mortality for interior
and coastal ecosystems in North America. We used 90 measures of grizzly bear density in interior ecosystems, of which 14
were currently known to be unoccupied by grizzly bears. In coastal areas, we used 17 measures of density including 2
unoccupied areas. Our best model for coastal areas included a negative relationship with tree cover and positive
relationships with the proportion of salmon in the diet and topographic ruggedness, which was correlated with
precipitation. Our best interior model included 3 variables that indexed terrestrial productivity, 1 describing vegetation
cover, 2 indices of human use of the landscape and, an index of topographic ruggedness. We used our models to predict
current population sizes across Canada and present these as alternatives to current population estimates. Our models
predict fewer grizzly bears in British Columbia but more bears in Canada than in the latest status review. These predictions
can be used to assess population status, set limits for total human-caused mortality, and for conservation planning, but
because our predictions are static, they cannot be used to assess population trend.
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Introduction

Grizzly bear hunting is controversial because of peoples’

conflicting values and interests. Sarewitz [1] argued that progress

toward solving environmental controversies must come primarily

from political processes rather than from scientific research. He

regards the idea that scientific facts and theories will help settle

disputes or build the appropriate foundations for guiding

environmental policy as old-fashioned and suggests that the role

of science is to collect information to support the implementation

of policies determined through political processes. Where grizzly

bear hunting opportunity is managed by a quota system, a

maximum allowable kill rate is prescribed (the policy) which is

then applied to estimates of population size (the scientific

information). This paper describes an approach to predict grizzly

bear densities that can be used to support, monitor, and evaluate

policy decisions.

In the last 15 years, improvements in aerial survey [2] and

genetic identification techniques [3] have led to a proliferation of

grizzly bear density estimates [4]. However, due to the high cost

and the vast areas involved, field-based density estimates have

been and likely will continue to be restricted to a small subset of

hunted populations.

Three approaches for predicting grizzly bear density have been

proposed where field-based estimates are unavailable. 1. Measures

of grizzly bear abundance can be generated by assigning densities

based on expert opinion regarding the value of landcover

attributes, supported by, or in conjunction with, field estimates

derived in similar ecosystems [5]. No expert-based models to date

have estimated confidence limits for the resulting density estimates

so evaluating conservation risk was subjective. Expert models have

not considered fundamental concepts, such as whether microsite

attributes sum or scale up to provide an indication of landscape

scale density [6]. In spite of their shortcomings, expert-based

models have been used in all jurisdictions in Canada where grizzly

bear hunting is allowed [5,7–9].

2. Resource selection function models can be used to predict the

absolute or relative probability of occurrence [10,11] and possibly

density [12] within small ecological units. Although occurrence

models may be statistically explanatory and objective, considerable

subjectivity may be required when deciding how and where to

apply them (e.g., [10]). Models vary with the local availability of

resources and behaviors related to regional life history or human

influence, and they do not generalize well to other landscapes

[11,13–17]. This is a considerable problem given that grizzly bears

occupy a wide range of environments and have many different life

history strategies.

3. Trend data can be used to predict density from areas with

known abundance [18]. This method requires relatively precise

measures of trend that are independent of variation in bear
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abundance. These data were provided by moose hunters in a

Swedish example [18]. Similar data do not exist in North America

and we were hence confined to one of the two modeling

approaches.

For the greatest general application, predictive abundance

models must be underpinned by an understanding of the

functional processes affecting density, use direct measures of

resource abundance, and apply to all environments and life history

strategies [19]. Recent work has quantified relationships between

abundance and landscape scale measures of environmental

attributes for white-tailed deer (Odocoileus virginianus; [20]),

carnivores [21], tassel-eared squirrels (Sciurus aberti) [22], coyotes

(Canis latrans) [23], kangaroos (Macropus spp.) [24] and people

[25]. Most of these models included one or more measures of food,

indexed either by a direct measure of the resource, such as tree

basal area for squirrels, or remote measures, such as temperature,

precipitation and soil type for humans.

We considered both bottom–up (food supply) and top-down

(competition and predation) influences on grizzly bear abundance.

Grizzly bears are omnivores and their reliance on animal protein

varies greatly across their range [26–28]. The single largest meat

source in their diet in coastal areas is spawning salmon and all

areas of very high bear density have large numbers of salmon over

much of the non-denning season [2,28]. Many populations have

no access to salmon and in the continental interior, grizzly bears

eat plants, especially fruit, and supplement their diet with insects,

rodents, freshwater fish, and ungulates where available [26–28].

Bears prefer highly digestible plant species and parts, because they

have a simple stomach and are relatively inefficient at digesting

plant matter [29,30]. Preferred species of plants where bears eat

the vegetative structure can be considered hydrophilic and bears in

the interior concentrate their foraging in moist sites [27,31]. The

exception being when they are digging for corms or roots of

various plants. Fruits of several shrubs are highly preferred in late

summer and fall and, along with meat, are the basis for the fat

deposition required for winter hibernation [32]. The abundance of

grizzly bear foods is not only related to ecosystem productivity but

also, for bears that live in forested environments, to successional

stage [33].

Competition may limit grizzly bear density where they are

sympatric with black bears (Ursus americanus) [34,35]. Black

bears and grizzly bears have similar digestive and foraging

efficiencies [30,36,37] and any competitive advantage of black

bears over grizzly bears feeding on plants and fruits is based largely

on the smaller body size of black bears [30,37]. Where grizzly

bears rely on meat, they often appear to exclude black bears from

the meat source [2,38,39], probably because the meat source is

clumped and therefore defendable, unlike plant and fruit supplies.

Areas that are largely devoid of trees do not support black bears

where their range overlaps that of grizzly bears [2,26,34,39,40].

Presumably grizzly bears exclude black bears from large open

areas because black bears cannot seek refuge from grizzly bear

aggression by climbing trees [34,40,41]. Historic persecution levels

may also influence potential competition between the two bear

species and this may be mediated by reproduction in grizzly bears

[42]. Reproduction is higher in black bears than grizzly bears

[34,35].

Grizzly bears have no significant predators [43,44], but social

factors may limit bear numbers. For example, female bears may

avoid important feeding areas to minimize the chance of male

bears killing their offspring [45,46]. Several different hypotheses

have been proposed regarding social regulation in grizzly bears

[44], however a recent analysis of field data for 4 sites did not

support the importance of any form of social regulation on density

[47].

Humans limit grizzly numbers by direct mortality, habitat loss,

and displacement due to disturbance. Mortality obviously reduces

density temporarily, but the relationship between mortality rate

and density is complex due to the effects of age ratios and density

dependence on vital rates. Habitat loss, and environmental change

that completely precludes occupancy by grizzly bears, obviously

reduces density. Disturbance has been shown to reduce grizzly

bear density at fine scales (e.g., along road corridors and near

developments [48,49]), but the link between disturbance and

landscape scale population density, although largely accepted by

practitioners [50], has never been demonstrated empirically.

Human density may index the above 3 factors, but the functional

link to bear density is unclear.

In this paper we modeled the relationship between existing

grizzly bear density estimates and potential limiting factors. We

then use those relationships to predict grizzly bear density across a

large and varied portion of their Canadian range and demonstrate

how the use of these predictions for setting hunting quotas and

evaluating past levels of human-caused mortality can support the

process of developing grizzly bear conservation policy.

Materials and Methods

Model development
Based on previous research we felt that the following factors

may functionally influence grizzly bear density at the population

scale: plant productivity, vegetation type, fish and meat availabil-

ity, scramble competition with black bears, human disturbance,

and human-caused mortality. Based on this functional model, we

began by assembling and deriving indices for these factors while

attempting to choose measures that were not highly correlated

with other factors to avoid collinearity (Table 1). Variables that

described food limitation were: salmon availability, the proportion

of salmon or ungulates and other non-plant foods in the diet,

remote sensing measures of plant productivity, and the proportion

of the landscape covered by trees and herbaceous vegetation.

Competition with black bears may be best described by measures

of black bear abundance, but these were so few that we used tree

cover or simple presence or absence of black bears as surrogates

for more direct measures of competition.

The only mortality factor we considered was direct killing by

people. Although it has been mandatory to report all human-

caused deaths in all jurisdictions in North America since the

1970’s, a substantial proportion of that mortality goes unreported

[51] including traditional use by First Nations. The direct effect of

human-caused habitat loss in urban areas was accounted for in the

remote sensing vegetation measures above. We used human and

livestock census information as measures of both the loss of habitat

effectiveness, due to behavioral decisions of bears to avoid areas

frequented by humans and, the impact of unrecorded human-

caused mortality. Other surrogates, such as road density or the

number or proportion of problem grizzly bears killed, were

difficult to standardize across jurisdictions and were more

temporally variable. We did not consider predation, diseases,

parasites, or social limitation, because there is no evidence that

those were general limiting factors. Hence our three over-arching

hypotheses were based on food limitation, scramble competition

with black bears, and human limits to density via mortality, habitat

loss, and decreased habitat effectiveness.

Predicting Grizzly Bear Density
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The dependent variable - meta analysis of grizzly bear
abundance

We critically reviewed estimates of grizzly bear population size

or density in the published and unpublished literature. We were

interested in estimates for landscapes large enough to represent a

grizzly bear population affected largely by births and deaths rather

than immigration and emigration, so we only used data where

study area size was .800 km2 (range 789–22,875 km2) or

approximately 10 female home ranges, and contained at least 15

resident bears (x̂x = 80, range 15–765). We used all population

estimates that met the above criteria and where we judged the

authors had done enough field sampling to generate an estimate

that was indicative of the ecosystem. We noted whether authors

accounted for bears that were not detected during fieldwork,

which generally required the use of mark-recapture analysis, but

we accepted more subjective assessments for some intensive census

studies. We also noted whether authors had accounted for closure

bias, which is the positive bias caused by movement in and out of

the study area during the study. We indexed the accuracy of each

population estimate by standardizing the confidence limit (CL)

width as a percent of the point estimate so we could weight each

observation in the analysis. We arbitrarily doubled the width of the

reported upper confidence limit (UCL) if authors did not consider

incomplete detection (3 areas) or the lower confidence limit (LCL)

if authors did not account for closure bias (2 areas). Where no

measure of precision was given, we assigned CLs based on survey

effort. We arbitrarily assigned the LCL as 50% of the point

estimate, but if the authors considered closure bias we reduced the

LCL to 25% of the estimate. We doubled the point estimate to

index the UCL unless the authors accounted for incomplete

detection explicitly, in which case we reduced the UCL to 50% of

the point estimate. We created confidence limits using the above

ad-hoc rules in 52 of 109 observations including all 16 unoccupied

areas discussed below and these were larger than most probability

based limits.

We selected 16 study areas in places that were historically

occupied by grizzly bears, but were currently not occupied. These

areas were all adjacent to occupied areas and there was no known

barrier to dispersal. We chose these areas to represent the range of

contemporary forces that work to exclude grizzly bears from parts

of their range. We selected areas of similar size to other studies in

those ecosystems and derived measures for independent variables

as for occupied study areas. Though the density estimate was zero,

based on local knowledge, we assigned upper CLs based on

trapping results, non-hunter kills and the recent record of bear

sightings in the study area.

We revised all grizzly bear density estimates by removing the

area of water, rock, and bare ground, because we considered these

unsuitable to bears.

Independent variables - derivation of surrogates for
limiting factors

We derived average annual precipitation, average annual

temperature, NDVI, and evapotranspiration to index plant

productivity from freely available spatial databases (Table S1 in

Appendix S1). Study area boundaries were digitized and mean

values for each variable were calculated for each study area,

excluding open water and barren areas, which was up to 35% of

the study area (mean = 6.5%). For five study areas outside of our

precipitation map, we used data from the nearest Environment

Canada long-term weather records.We also derived a measure of

topographic ruggedness [52], which we included as a covariate to

index the increased land area associated with sloped areas. This

variable was correlated to precipitation (r = 0.73, N = 90), but not

to any other productivity variables (r,0.28, N = 90).

Landcover had been previously assigned into 3 structural classes

at 500 m resolution: herbaceous (which includes shrubs ,2 m in

height), trees .2 m tall, and barren ([53]; Table S1 in Appendix

S1). We surmised that in areas where the two bear species are

sympatric, grizzly bears would monopolize resources in open areas

and we used the proportion of each study area which was tree

covered to index inter-specific interaction, while recognizing that

the lack of tree canopy may also increase the vegetation resources

available to bears. We calculated the proportion of forest in the

vegetated portion of each study area by summing the proportion of

pixels rated as .25% forest. We derived a measure of herb-shrub

cover to index vegetative forage under the general assumption that

forage is more abundant in non-forested areas. We calculated the

Table 1. Factors hypothesized to limit grizzly bear density in interior ecosystems in North America and the
variables we derived to index these factors.

Plant productivity Vegetation type1 Diet
Competition with
black bears Human disturbance Human-caused mortality

annual precipitation tree10 salmon presence tree10 tree10 human density

annual temperature tree25 %salmon in diet tree25 tree25 human+livestock density

annualized NDVI herb50 %terrestrial meat in
diet

black bear presence livestock density human+livestock density within
10 km2

evapotranspiration herb75 human density human+livestock density within
50 km2

ruggedness herb100 human+livestock density mean recorded human-caused
mortality in past 10 years

human+livestock density within
10 km2

human+livestock density within
50 km2

We digitized the study area boundary for each study area and calculated the average for each index using a GIS. See Table S1 in Appendix S1 for detailed description of
GIS derived variables.
1This is the sum of all pixels with .the stated percentage of described cover. For example, herb50 = the proportion of the study with pixels rated as .50% herb/shrub.
2This is the mean human and livestock (sheep and cattle) density (summed) for the area within 10 or 50 km of the study area boundary.
doi:10.1371/journal.pone.0082757.t001
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proportion of herb-shrub area by summing the pixels with .50%

herb-shrub cover. Pixels that were rated as 100% barren were

excluded from spatial calculations (using a GIS mask); these areas

were mostly rock and ice.

We used the fraction of salmon and animal tissue in the diet of

bear populations as surrogates for salmon and terrestrial meat

availability. Diet fractions may not be linearly related to resource

availability, but deriving measures of salmon and meat availability

across large areas was not feasible. Salmon and terrestrial meat

components of the diet were predicted using isotope analysis of

grizzly bear hair collected from each study area [54]. Where we

did not have hair samples to estimate diet, we calculated mean

values from spatial raster-based maps built from a continent-wide

diet dataset ([54], digital data available in SOM). Unoccupied

areas were necessarily assigned diet fractions in this way. We based

diet fractions on direct feeding observations for two study areas

(Nome and Midsu), because the model predictions suggested no

salmon in the diet, and this was known to be incorrect [2]. For one

area (Tweedsmuir), we recalculated diet using just the samples

collected in the study area, because the map-derived values

included areas where salmon were not available and were likely

inaccurate. We also applied this value to the nearby Kimsquit-

Dean area, because the mapped diet was likely biased low due to a

drastic decline in salmon numbers in the nearby Owikeno Sound

([55] and unpublished data). Kokanee (Oncorhynchus nerka) were

considered part of the salmon component of the diet. Kokanee diet

fractions presented in Mowat and Heard [54] were reduced by

half, based on further data collected from kokanee in central

British Columbia (D. Heard, unpublished data). We also derived a

categorical variable indexing the importance of salmon where 0

meant no salmon available, 1 for areas with little salmon, such as

some interior areas, and 2 for those areas where bears were

considered to derive most of their resources from salmon.

Human and livestock density was used to index human

displacement, disturbance, and unreported bear mortality. We

tested log transformations of these variables, because the influence

was expected to be nonlinear [56]. The number of people and

livestock (cattle and sheep) were calculated from polygon-based

census data for the US (2000) and Canada (2001). Count data

were used to calculate density for each census unit and density was

used to calculate the number of resident people and livestock in

each study area. In order to minimize the number of variables we

added the human, cattle and sheep counts together to produce a

single composite variable; this index combined both the various

human impacts with the threat of direct mortality posed by

livestock grazing.

Human-caused mortality necessarily reduced bear density and

was entered directly and as a squared term to account for the non-

linear influence of recent mortality on the standing population. We

estimated the number of bears killed by people from government

databases or published accounts. Counts of all legally killed bears

have been recorded since at least the mid 1970s for all the

jurisdictions in this study and represent a minimum number of

bears killed by people. We calculated the annual kill rate (number

bears killed/bear population estimate) over the 10 years previous

to each density estimate. Unoccupied areas were assigned mean

kill rates so these records did not bias the fitting of this variable.

Raw data are available in Appendix S2.

Statistical analysis
We used Principal Components Analysis (PCA; [57]) to contrast

.3 variables that were surrogates for the same limiting factor.

Principal component scores were considered, but not used,

because of the difficulty in interpreting the resulting regression

equation [58].

Ordinary least squares regression cannot be used directly to fit

these models, because of the inclusion of study areas where no

grizzly bears were located. For these points, the assumption of

normally distributed errors about the regression line is violated.

Consequently, Tobit regression [59] was used. In this model, a

latent (hidden) variable (Y *) follows the ordinary linear model:

Y �~Xbze

However, only the max(0, Y *) can be observed, i.e. it is

impossible to observe negative densities.

Maximum likelihood was used to fit the Tobit model (Proc

QLIM, SAS 9.2). Models were fit where every study area was

given equal weight and where study areas were weighted by the

inverse of the relative CLs to downweight study areas with less

precise estimates of density.

We constructed an a-priori suite of models based on expert

judgment, including variables thought to affect grizzly bear

densities. Additional models were added to the initial model set

where potential predictors were dropped or transformed.

Potential models included transformed values for human and

livestock density to approximate the known form of the

relationship, based on previous research as described earlier. We

also included indicator variables that controlled for 3 cases we

considered outliers, based on initial screening of the data. Two

study areas had high and presumably unsustainable mortality

rates, and one unoccupied area had very high human density. We

used the small-sample corrected AICc to compare model fit,

ranked models using AIC weights [60], and we examined top-

ranked models for the presence of uninformative variables [61].

We investigated the leverage of each record in the top-fitting

models using influence plots based on simple regression to check

for individual study areas that may account for the inclusion of a

predictor in the model. Residuals from the top-fitting models were

examined for outliers and distribution [57].

We used a leave-one-out jackknife procedure to estimate the

increase in prediction error that might occur when the model was

used to predict densities outside of the set used to build the model.

Each individual study area was sequentially dropped from the

analysis, the remaining data were used to fit the model being

examined, and this fitted model with sample size n-1 was then used

to predict density for the study area held out.

Results

We derived 118 estimates of density including 16 for areas

currently unoccupied by grizzly bears (Tables 2 and 3). This total

included 2 repeated inventories for 6 study areas that were carried

out in different years. The number and precision of those

inventories was greatest in the southeastern portion of the range

of grizzly bears and lowest in Yukon and the Northwest Territories

(Figure 1). We do not believe there was a systematic bias in the

data based on the selection of study areas because the motivation

for inventories was not just conservation concern. Inventories were

done for research, impact assessment, native land claims,

ecological benchmarks and trend monitoring in National Parks.

In coastal areas, where salmon were abundant (i.e., .27% of

diet), grizzly bear density estimates were up to an order of

magnitude higher than in interior areas (Figure 2). In addition,

coastal grizzly bear density estimates were much higher in areas

where black bears were absent than where they were present

Predicting Grizzly Bear Density
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(Table 3). The one exception was the Kuskowim Delta in

westcentral Alaska. This area had modest grizzly bear density

and their diet contained more terrestrially derived meat (presum-

ably caribou) than salmon or vegetation (C. Stricker, USGS,

Denver, unpublished data). Coastal areas where black bears were

present had much lower grizzly bear density, and the proportion of

salmon in the grizzly bear diet was also more variable (Table 3).

We concluded the availability of salmon led to fundamentally

different ecological relationships so we built separate models for

coastal and interior areas based on an arbitrary cut-off of 20%

salmon in the diet. We further separated the coastal data into those

areas where black bears were sympatric with grizzly bears and

those where black bears were absent. We did not build a predictive

model for coastal areas where black bears were absent because

there were no areas like this in British Columbia.

In interior areas, density varied from 2.5 to 65 grizzly bears/

1000 km2 and there was a broad range of values for most

independent variables (Table 3). Human and livestock density was

higher for unoccupied areas, presumably because humans were

the ultimate cause of the extirpation in many of these areas.

In interior areas, the first eigenvector of a PCA suggested all 5

vegetation productivity variables were correlated and that

ruggedness and NDVI contrasted in the second eigenvector.

These results suggested ruggedness and NDVI should be included

in the multivariate analysis, but that any of the five productivity

variables could substitute for one another. For this reason we

decided to include all five variables in the analysis. A second PCA

with the vegetation type variables also demonstrated strong

correlation among 4 of the 5 variables, whereas the fifth variable,

herb100, was nearly invariant across the data. These results

suggested that any one of the vegetation type variables could be

used to index vegetation cover. We chose herb50, because we felt

it would index bear food with the most sensitivity. We also

included tree25 in the global model to index black bear

competition, which was supported by comparing black bear

presence across vegetation cover. Although the vegetation cover

variables were strongly correlated, the presence of black bears was

most clearly separated across the tree25 variable (Figure 3). A third

PCA for the human influence variables showed essentially a single

component that was an average of all 5 variables. Both human and

livestock density showed a threshold with density, which suggested

Table 2. Descriptive statistics for data used to build models to predict grizzly bear density in interior North
America.

Variable Occupied areas Unoccupied areas

�xx SD Min Max n �xx SD Min Max n

Population size 92 96 15 765 76 0 0 0 0 14

Study area size
(km2)

5110 4297 789 22875 76 6358 1629 3913 8959 14

Barren (% of study
area)

6.7 8.6 0.0 34.6 76 1.7 2.1 0.1 6.7 14

Density (barren area
removed)

23.0 15.1 2.5 64.6 76 0.0 0.0 0.0 0.0 14

CL relative (% of
density)

1.0 0.5 0.1 1.9 76 0.8 0.3 0.5 1.0 14

Human-caused
mortality (%)

3.7 3.9 0.0 20.1 76 01 0.0 0 0 14

Annual precipitation
(cm)

84 40 16 199 76 52 7 43 68 14

NDVI 116 15 77 137 76 129 5 115 136 14

AET 296 104 97 443 76 342 60 228 440 14

Average annual
temperature

24.0 5.0 217 3.7 76 0.9 3.1 25.0 4.7 14

Ruggedness 3.9 1.4 1.0 6.0 76 2.2 1.3 1.0 4.2 14

Trees (.25% per
pixel)

48.1 34.7 0.0 99.5 76 69.7 30.0 8.4 99.7 14

Herb-shrub (.50%
per pixel)

57.6 28.1 3.1 99.1 76 50.6 28.4 6.8 94.0 14

Salmon (% of diet) 1.0 3.0 0.0 14.0 76 1.5 3.6 0.0 10.2 14

Kokanee (% of diet) 0.7 3.5 0.0 26.0 76 0.6 1.5 0.0 5.1 14

Meat (% of diet) 25.1 15.5 0.0 58.2 76 29.3 13.9 12.5 48.1 14

Human density
(humans/km2)

0.9 1.7 0.0 8.4 76 4.3 5.6 0.0 21.4 14

Livestock density
(animals/km2)

1.7 5.5 0.0 39.4 76 11.5 16.9 0.0 53.2 14

See Table S1 in Appendix S1 for detailed description of GIS derived variables.
1The kill rate in unoccupied areas was zero, but we used the mean rate of 3.7 for occupied areas during analysis so that these areas did not bias the distribution for this
variable.
doi:10.1371/journal.pone.0082757.t002
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a non-linear relationship. We excluded the 2 variables that

measured human and livestock density surrounding each study

area, because there was no indication that density trended to zero

at high human or livestock density [56].

There was very little variation in salmon in diet (which included

kokanee) in interior areas and so the composite of fish and

terrestrial meat in the diet was dominated by the meat component.

For this reason the food composite variable was not considered

further in the analysis.

In coastal areas with black bears, a PCA for the vegetation

productivity variables yielded similar results to the interior dataset

and we considered all five variables for the same reasons as above.

We also chose to include herb50 and tree25, because these two

variables may contrast herbaceous food abundance with compe-

tition with black bears. Human density was the only human

influence variable that had substantial variation across the dataset

and was the only variable we included. Diet was dominated by

salmon and this was the only diet variable considered (Table 2).

Expectedly, there were no coastal areas with low precipitation

(Table 2).

Tobit regression for interior areas
Based on biological considerations and the above investigation

of the data, we included the following variables in our global

regression: precipitation, NDVI, AET temperature, ruggedness,

herb50, tree25, salmon-in-diet or salmon-presence, meat-in-diet,

human density, livestock density or human + livestock density,

human-caused mortality, and (human-caused mortality)2. Log

transformations were also compared for the human-influence

variables. When we compared the effect of salmon-in-diet versus

the salmon-presence variable, only the salmon-presence variable

remained consistently in the top models and we therefore excluded

the salmon-in-diet variable.

When we compared the prediction strength of ‘human and

livestock density’ versus the single composite variable, the

composite variable was not included in the top-competing models.

A log transformation did not improve the fit of the composite

variable. This suggests the form of the relationship between

human density and bear density differed from that of livestock

density and bear density, so we dropped the summed variable,

‘human plus livestock density’.

One unoccupied area had double the human density of the next

lowest value and was considered an outlier. This study area

(Thompson) and the two other study areas (Upper Susitna and

Table 3. Descriptive statistics for data used to predict grizzly bear density in coastal North America.

Variable Black bears present Black bears absent

�xx SD Min Max n �xx SD Min Max n

Population size 81 88.6 0 352 17 619 450 102 1548 11

Study area size
(km2)

3743 2858 431 9854 17 2829 2463 228 9163 11

Barren (% of study
area)

16.0 10.4 0.7 43.4 17 9.6 10.0 1.1 35.7 11

Density (barren area
removed)

31.1 25.9 0 86.6 17 332 215 37 856 11

CL relative (% of
density)

1.1 0.5 0.1 2.0 17 0.6 0.5 0.2 1.5 11

Human-caused
mortality (%)

2.3 2.6 0.0 10 17 3.8 2.7 0 7.3 11

Annual precipitation
(cm)

275 111 115 473 17 160 57 101 255 11

NDVI 109 16 75 130 17 104 12 79 115 11

AET 370 58 263 474 17 321 30 239 351 11

Average annual
temperature

1.6 2.5 22.6 6.7 17 1.0 2.0 24.5 2.6 11

Ruggedness 5.5 0.6 4.2 6.2 17 4.3 1.0 2.6 5.4 11

Trees (.25% per
pixel)

54.4 23.1 17.8 96.8 17 40 25 1 79 11

Herb-shrub (.50%
per pixel)

44.9 16.6 8.8 71.6 17 68 21 36 98 11

Salmon (% of diet) 41 22 0 78 17 59 15 28 82 11

Kokanee (% of diet) 0.4 0.8 0.0 3 17 0 0 0 0 11

Meat (% of diet) 2.3 3.9 0.0 13.4 17 3 11 0 36 11

Human density
(humans/km2)

4.3 13.4 0.0 55.0 17 0.6 1.6 0.0 5.5 11

Livestock density
(animals/km2)

1.1 4.3 0.0 17.9 17 0.01 0.00 0.0 0.02 11

We separated areas where black bears were absent, because there were large difference in density between these areas. See Table S1 in Appendix S1 for detailed
description of GIS derived variables.
doi:10.1371/journal.pone.0082757.t003
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Swan Hills), where the number of grizzly bears killed by people

was very high, were modeled using indicator variables in order to

test their influence on fit. No models that included these indicator

variables were included in the top models, suggesting these cases

did not unduly leverage the analysis (Table 4). ‘Salmon-presence’

and ‘meat-in-diet’ were usually in the top models and the

regression coefficient for the salmon variable was positive,

whereas, surprisingly, that of the meat variable was negative.

The weighted Tobit models gave highest AIC weight (18%) to

the global model, but this model had 9 variables, whereas the next

model, that had only 7 variables, had similar weight (17%) and an

AIC value that was only 0.3 higher than the global model. We

chose to exclude the global model on the basis that it contained

noise parameters and considered Model 2 to be our best model

(Table 4). Model 2 included: annual precipitation (sign positive),

annualized NDVI (+), average annual AET (+), the proportion of

pixels in the study area with more than 50% herb-shrub coverage

(+), log human density (2), livestock density (2), and ruggedness

(+). The top 3 models had similar weight and differed by the

inclusion of tree cover (2), the proportion of terrestrial meat (2) in

the diet, and the exclusion of NDVI. Rankings of models were

relatively consistent between the weighted and unweighted

analysis and we present only the weighted analysis here.

Residual plots, using Model 2, showed no evidence that the

regression assumptions were not met [57]. There was considerable

variation in the residuals, but the largest residuals were associated

with the observed densities with the widest CLs (Figure 4). For

computational ease, ordinary least squares was used to compute

approximate partial regression plots (leverage plots, [62]). These

showed no serious outliers. The standard error of all predictions

was approximately 10.5 bears/1000 km2. Two thirds of the CLs

of the observed densities overlapped the 1:1 line (Figure 4). Model

errors were assumed to be independent among study areas. For 4

of the 90 study areas, the observed estimate fell outside the

approximate 95% prediction interval for that site, but in all cases,

the CL for the observed estimate overlapped the CL for the

regression (Figure 4).

Figure 1. Estimates of grizzly bear density in North America. Areas currently unoccupied are filled with hatching. The presence of black bears
throughout the study area is denoted by a black outline, partial presence of black bears by a gray outline and a hatched gray or no outline means
black bears did not occur on the study area. Areas without salmon are not colour filled, those with abundant salmon are filled in red, and those where
salmon were present but not abundant in rose. The black bear distribution in North America is shown in tan [91].
doi:10.1371/journal.pone.0082757.g001
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The mean model error for all jackknife runs was compared to

the mean error of the model with all data included. For the top 10

interior models, the mean squared prediction error was 9–13%

greater using the jackknife procedure compared to the model fit

using all of the data. Model 1, the global model, which we

excluded, had 12% higher model error using the jackknife

procedure compared to the model error based on all the data

whereas Model 2, our preferred model, had 9% higher error

Figure 2. The relationship between grizzly bear density and mean annual precipitation. Study areas where grizzly bears were allopatric
are denoted by squares and where black and brown bears were sympatric by diamonds. Open symbols denote coastal study areas where salmon was
a major component of the diet; filled symbols show study areas where salmon were few. Unoccupied areas and one coastal area where brown bears
were allopatric and at very high density (856) are not shown.
doi:10.1371/journal.pone.0082757.g002

Figure 3. The relationship between vegetation cover and grizzly bear density. These are 76 sites from across interior North America where
salmon is a minor component of the diet. We compare this relationship between 2 variables, tree cover (a–b) and herb-shrub cover (c–d). We also
present 2 levels of summary within each study area for each variable. For example, tree.10% means that we summed the pixels where tree cover
was .10% and calculated the proportion of the study area where this occurred. Black bears appear to be absent from areas where grizzlies are
present and trees cover , about 20% of the study area. The proportion of the study with .25% tree cover appears to best describe this process.
doi:10.1371/journal.pone.0082757.g003
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(Table S2 in Appendix S1). The increase in prediction error for

the interior dataset was modest and indicated that predictions for

study areas outside those used in fitting the model should be

reliable. Model-averaged predictions and predictions from Model

2 were similar and further justified considering it our best model

(Figure S1).

Tobit regression for coastal areas
Based on biological considerations and the above investigation

of the data, we included the following 7 variables in our global

regression: precipitation, NDVI, AET, temperature, ruggedness,

herb50, tree25, salmon-in-diet, and human density or log human

density. The top model in the weighted Tobit analysis had 7

variables and the second model had 6 variables (Table 5). We

excluded both models, based on the sample size to parameter ratio

and because the third model included only 3 variables and the

AIC value was only 2.2 higher than the top model, suggesting the

other 4 variables in the top model were largely uninformative [61].

Our preferred model included the proportion of pixels in the study

area with more than 25% tree cover (2), the proportion of salmon

in the diet (+), and ruggedness (+). Rankings of models were

relatively consistent between the weighted and unweighted

analysis and we present only the weighted analysis here.

The jackknife procedure was also used to compare among

coastal models. The mean square prediction error from the

jackknife models varied from 30–112% greater than that of the

fitted model; it was 30% higher for Model 3, our preferred model

(Table S3 in Appendix S1). Because the coastal model was based

on a relatively small number of data points, compared to the

number of predictors, Models 1 and 2 may have been fitting

artifacts of the coastal study areas.

Residual and leverage plots using Model 3 showed no evidence

of lack of fit and no serious outliers. Plots of predicted versus

observed densities showed a modest variation of residuals

(Figure 5). Model averaged predictions and Model 3 predictions

were similar, further justifying our use of Model 3 to predict

density (Figure S2).

Model predictions
Our models can be used to predict grizzly bear density for any

area for which data exist for the input variables. Population size

can be derived from density and these can be added to derive a

population prediction for a larger area. We could not compute

estimates of the uncertainty in composite predictions (i.e. for the

total over several prediction areas), because predictions for study

areas that are geographically adjacent with similar covariate sets

are unlikely to be independent. Combining the uncertainties of the

individual predictions will underestimate the uncertainty of the

total. Without further information about the spatial structure of

predictions from neighboring geographical areas, it is unclear how

to compute an appropriate measure of uncertainty for the total

over multiple study areas.

We predicted grizzly bear densities for Canada by summing the

individual predictions within wildlife management units (Table 6).

We used the interior Model 2 for all areas except coastal British

Table 4. The top 10 model selection results for study areas in interior North America (n = 90) relating grizzly
density to variables that were hypothesized to be functionally related to density.

Model number Model description AICc DAICc K AICc weight

2 Prcp_NDVI_AET_H50_LHum_Live_Rug 978.9 0.0 9 0.17

3 Prcp_NDVI_AET_H50_T25_LHum_Live_Rug 979.0 0.1 10 0.16

4 Prcp_AET_H50_Meat_LHum_Live_Rug 979.1 0.3 9 0.15

5 Prcp_NDVI_AET_H50_T25_Meat_LHum_Live 980.1 1.2 10 0.09

6 Prcp_NDVI_AET_H50_T25_SP_Meat_LHum_Live_Rug 980.2 1.4 12 0.08

7 Prcp_NDVI_AET_H50_SP_Meat_LHum_Live_Rug 980.5 1.6 11 0.07

8 Prcp_AET_H50_SP_Meat_LHum_Live_Rug 981.2 2.3 10 0.05

9 Prcp_AET_H50_T25_Meat_LHum_Live_Rug 981.5 2.6 10 0.05

10 Prcp_NDVI_AET_H50_T25_SP_Meat_LHum_Live 982.6 3.7 11 0.03

11 Prcp_AET_H50_T25_SP_Meat_LHum_Live_Harv_Rug 982.8 3.9 12 0.02

The top-ranked model was excluded from this list, because it contained 2 uninformative variables. Variables are: Prcp = precipitation, NDVI = normalized differential
vegetation index, AET = actual evapotranspiration, H50 = herbaceous and shrub cover .50%, T25 = tree cover .25%, Meat = terrestrial meat in diet, SP = presence of
salmon in diet, LHum = log human density, Live = livestock density, Harv = human-caused mortality, Rug = ruggedness.
doi:10.1371/journal.pone.0082757.t004

Figure 4. Observed versus predicted values of grizzly bear
density (bears/1000 km2) using the best fit interior model
described in Table 4. Data included 76 inventoried study areas and
14 unoccupied areas across the interior of western North America. Error
bars are 95% confidence limits for observed data derived from the
survey results or estimated subjectively, based on survey methods (see
Methods for detailed description). The cases with the largest residuals
often had the greatest error and were hence weighted lower in the
regression.
doi:10.1371/journal.pone.0082757.g004
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Columbia where were used coastal Model 3 (Table S4 in

Appendix S1)

Predicted grizzly bear densities in the Northwest Territories and

Nunavut varied from zero in southcentral NWT to .30 bears/

1000 km2 in parts of the western arctic coast, densities decline to

the east and were much lower east of the Mackenzie River. In

Yukon, the model predicted densities that vary from 0–31 bears/

1000 km2 (Table S5 in Appendix S1). The lowest density was for

the Labarge Unit surrounding the city of Whitehorse; the only

place in the territory that had high human density. The Kluane

area of southwest Yukon had higher precipitation than the range

of data in the model (234 cm). This prediction may be biased high,

if the relationship with density is not linear, but rather levels off

beyond the range of the input data (Table 2). The average human-

caused kill rate among population units was 1.3%, but was ,1%

when calculated for the entire territory. The Labarge unit had

about 3 kills/year and predicted density of zero. This area may be

a habitat sink for grizzly bears. The Dezadeash and Arkell units

have mortality rates .5% and may be of conservation concern.

Predicted densities for British Columbia varied from 0 to

58 bears/1000 km2. The highest coastal densities were in north-

ern areas where salmon consumption was high and tree cover was

low. Interior areas with high density occurred throughout the

province, but were always rugged areas with high rainfall and few

people. Many units in the province were predicted to have low

density and, whereas this was often associated with high human

density, predicted densities in flat areas with low rainfall and low

herb-shrub cover were also low. The average rate of human-

caused mortality was 2.9%/yr, with most mortality from hunter

kills (mean = 295/yr), but problem bear kills, and road and rail

collisions, (mean = 61/yr) comprised a greater proportion of

deaths in units with low predicted bear populations or relatively

high human density (Table S4 in Appendix S1).

Discussion

Model Tests
We lacked the data to systematically test our models indepen-

dently, so our testing was confined to comparisons with other

approaches and examining areas of known low density. Boyce and

Waller [10] used RSF models from previous research in Montana

to predict potential abundance in the Bitterroot Mountains of

central Idaho. This area is currently not occupied by grizzly bears

so the number was meant to assess recovery potential. They had

models for 3 seasons. The lowest predicted abundance was 321

bears and their highest seasonal prediction was 484 bears in

spring. Our interior model predicted a total population of 657

bears (approximate 95% CL = 211–1103). Boyce and Waller [10]

assumed that the population estimate from their two reference

study areas were unbiased estimates of equilibrium density

whereas bear numbers have increased in both areas since their

research was done [63,64].

Mattson and Merrill [65] provided an independent prediction

of grizzly numbers in the Cabinat-Yak Recovery Area in Montana

and Idaho, based on study area scale modeling of habitat

capability and the depressive effects of human use. This area

was one of our model areas and the 2004 population was

estimated at 44 bears. The population was recovering from very

Table 5. The top 10 model selection results for study areas where grizzly and black bears were sympatric in coastal
North America (n = 17) relating grizzly density to variables that were hypothesized to be functionally related to
density.

Model number Model description AICc DAICc K AICc weight

3 T25_salmon_Rug 157.7 0.0 5 0.17

4 Prcp_NDVI_AET_salmon_Hum_Rug 157.8 0.1 8 0.16

5 Prcp_NDVI_AET_salmon_LHum_Rug 158.0 0.3 8 0.15

6 Prcp_NDVI_Temp_H50_salmon_Hum_Rug 158.8 1.2 9 0.10

7 Prcp_NDVI_Temp_H50_salmon_LHum_Rug 159.9 2.2 9 0.06

8 Prcp_NDVI_Temp_H50_T25_salmon_Rug 160.2 2.6 9 0.05

9 Prcp_NDVI_Temp_T25_salmon_Hum 160.7 3.1 8 0.04

10 Prcp_NDVI_H50_T25_salmon_LHum_Rug 160.9 3.3 9 0.03

11 Prcp_NDVI_H50_T25_salmon_Hum_Rug 161.2 3.5 9 0.03

12 NDVI_T25_salmon_Rug 161.2 3.5 6 0.03

The two top-ranked models were excluded from this list, because they contained four and three uninformative variables. See Table 4 for definition of variables; salmon
= salmon in diet.
doi:10.1371/journal.pone.0082757.t005

Figure 5. Observed versus predicted values of grizzly bear
density (bears/1000 km2) using the best fit coastal model
described in Table 5. Data included 15 inventoried study areas and 2
unoccupied areas across the interior of western North America. Error
bars are 95% confidence limits for observed data derived from the
survey results or, estimated subjectively based on survey methods (see
Methods for detailed description).
doi:10.1371/journal.pone.0082757.g005
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low numbers and human-caused mortality appears to be limiting

recovery [66]. Mattson and Merrill’s model predicted the area

could support 123 bears and our interior model predicted 130

bears. The current population size may be a result of top-down

mortality forces and the predicted population sizes may be best

viewed as potential population sizes if the population was released

from top-down limitation.

Predictions for extirpated zones and depressed
populations as model tests

There were 14 study areas not known to support grizzly

populations in the interior dataset. The predicted density was zero

for 8 of these areas and .4 for the 6 other areas. Two areas had

predicted density of .14 bears/km2. Grizzly bears do not occur in

the southern boreal regions of NWT and Nunavut and northern

Alberta and Saskatchewan [9]. This area is presumably grizzly

bear-free naturally, because human density is very low. Four

unoccupied study areas in this area had low human density and

predicted grizzly bear densities were 0, 0, 9, & 21 (SE 10.6–10.8).

Predicted grizzly density for ecoregions in the unoccupied area

varied from 0 to 38 bears/1000 km2. The boreal portion of this

unoccupied area was predicted to have low bear density, usually

zero. The parkland and grassland areas south of the boreal zone

were predicted to have zero bears throughout Alberta, but high

densities were predicted in the same ecoregions in Saskatchewan.

Human and livestock densities were much higher in Alberta, all

other input data were similar. These results demonstrate that our

interior model does not index the ecological factor or factors

limiting distribution in all unoccupied areas well. Some combina-

tion of limiting factors excludes grizzlies from the Canadian

prairies and surrounding boreal forest and this result was only

correctly predicted by the interior model when human density or

tree cover was high.

We also used our preferred models to predict equilibrium

densities in known extirpated areas and zones with depressed

populations that are designated as threatened or endangered in

British Columbia and the lower 48 states ([8,67] Table 7). Areas

where grizzly bears are currently extirpated in British Columbia

were all predicted to have densities ,8/1000 km2 and ,30 grizzly

bears in the population unit. Most threatened units were also

predicted to have small populations, but four units were predicted

to have .150 bears (South Chilcotin Ranges, Squamish-Lillooet,

Toba-Butte and the North Cascades). A recent inventory in the

southern portion of the South Chilcotin Ranges unit suggests

current populations may be similar to predicted numbers and

hence no longer threatened [68]. The Squamish and Toba

populations are recovering from human over-exploitation and are

likely lower than predicted by the model. The North Cascades

area in southwest BC and central Washington currently supports

very few bears [69] although our model suggests the area may be

capable of supporting several hundred bears on the Canadian side

alone (Table 7). Previous habitat-based modeling suggested that

the Canadian portion of the North Cascades could support 293

bears [70], which is similar to the 284 suggested by our model.

Our interior model predicted grizzly densities between 19 and

35 bears/1000 km2 in the six recovery areas in the lower 48

United States. This resulted in population predictions between 64

and 874 per study area, which is many more bears than currently

occurs in two of these 6 areas (Table 7). As in Canada, the biggest

discrepancy was in the North Cascades. Additionally, the

Bitterroot Range is currently unoccupied, yet the interior model

predicted 445 bears in this unit. In both these areas recovery is

likely limited by the inability of grizzly bears to re-colonize these

areas, not habitat characteristics.

We compared prediction units of various size and the results did

not alter total population predictions for British Columbia or

Yukon greatly (Table 6). The impacts were greater for British

Columbia, because density was more variable. There are limits to

the size of the area to which the model can be applied; ideally

prediction units would be similar in size to the study areas used to

build the model.

Using the models to manage grizzly bear mortality
The models we developed, and the population sizes predicted

from them, provide information to support the implementation of

grizzly bear management policies. Population predictions were

used to calculate human-caused mortality limits and predict

habitat capability. Sustained yield management involves the trade-

off between conservation risk and benefits to society. Conservation

risk can be minimized by policy, such as reducing the maximum

harvest rate, or by investment, such as by increasing inventory

effort. In 1978 the Government of British Columbia began to

Table 6. A summary of predicted numbers of grizzly bears in Canada and in National Parks by province, based on
the coastal and interior models developed in this paper.

Province Current population projection
Predicted population size from this
paper Prediction units Number in National Parks

Alberta 867a 1250 ecoregions 396

British 16,014b 13,131 WMU’s 126

Columbia 13,974 GBPU’s

14,101 ecoregions

Nunavut 1000c 8080 ecoregions 0

Northwest Territories 5100c 16,771 ecoregions 835

Yukon 6300c 10,404 guide territories 465

10,465 ecoregions

We predicted density for small portions of each province using ecological unit mapping (ecoregions-the largest units used), provincial wildlife management units
(WMUs), provincial grizzly bear population units (GBPUs, groups of 1–5 WMUs), and territorial guide territory boundaries which were roughly similar to WMUs in size.
a[94] with corrections for portions of the National Parks that were not included.
b[92].
c[9].
doi:10.1371/journal.pone.0082757.t006
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move from seasonal hunting restrictions to a quota system to

manage grizzly bear hunter kill. This change was effected in order

to reduce conservation risk and indeed there is evidence some

grizzly bear populations increased following to this policy change

([71] and G. Mowat, unpublished data), although other limiting

factors may have changed as well. The paradox of these good

intentions is that a quota system requires population sizes for every

hunted population, because allowable kill is usually calculated as a

portion of the standing population. Implementation of that policy

required population estimates for all areas occupied by grizzly

bears. This policy change precipitated a large increase in inventory

investment [4], but population predictions were still required for

many parts of the Province. The prediction method we describe

here was another response to the change in harvest policy, and a

reasonable balance between accuracy and investment. Our work

used all currently available data, did not require expensive field

testing, and provided predictions for all areas of British Columbia.

Our study demonstrates the uncertainty in extrapolating animal

densities, even for species for which there is considerable inventory

data and a good understanding of the population biology. Many

areas were predicted to be unoccupied, or nearly so, when clearly

this was not the case based on local knowledge or kill data, and

vice-versa. This presents 3 problems for wildlife managers; 1) they

will be forced to decide between those conflicting data (i.e.,

whether to allow hunting), 2) if they allow hunting then they will

have to assign a density to the area either subjectively or using

some other method, and 3) the credibility of the modeling process

will be reduced, because it will be clearly evident that the model is

‘wrong’. These nuances and decisions are regularly confronted by

wildlife managers and our example highlights the fact that

removing subjectivity from the decision making process is

impossible, even for very well studied species. Our study

demonstrates the benefit of local knowledge, even for this highly

data-driven management system. For example, 15% of our data

were from extirpated areas where the population estimates and

precision were based on local knowledge.

The population predictions were higher than current estimates

for all Canadian provinces and territories except British Columbia

[9]. Much of the discrepancy can be attributed to the fact the

model predicted relatively high densities in northern boreal areas

as discussed earlier. Densities predicted by the interior model in

the tundra portions of the north are almost certainly too high in

the eastern Arctic where large areas are not currently occupied or

newly colonized. Population predictions for the Northwest

Territories and Nunavut may be more realistic if these unoccupied

areas were excluded from the prediction area.

Both our models predict more variable densities than other

modeling efforts in British Columbia [5,72] or Alberta [73]. If this

variation is real, then earlier models were over-predicting density

in some areas. Indeed, 12 management units in British Columbia

Table 7. Extrapolated grizzly bear densities and population sizes for a selection of areas in western North America
that are currently unoccupied, occupied at low densities, or are considered threatened.

Population unit Current population estimate Predicted population size

Okanagan Valley, BC 0a 27

Thompson Valley, BC 0a 13

Caribou Plateau, BC 0a 0

Peace River agriculture zone, BC ,40a 29

North Cascades, BC 23a 284

Garibaldi-Pitt, BC 18a or 0b 40

Squamish-Lilloet, BC 56a or 52b 180

Toba-Bute, BC 75a or .106b 211

Stein-Nahatlach, BC 61a or 23b 129

South Chilicotin Ranges, BC 104a or .147b 257

Blackwater West Chilicotin, BC 193a 24

Granby-Kettle, BC 81a 88

South Selkirks, BC 58c 85

Yahk, BC 20c 12

Bitteroot, ID and MT 0d 445

Cabinet-Yak, ID and MT 44d 130

North Cascades, WA ,5d 874

Northern Continental Divide, MT 765e 641

South Selkirks, ID and WA 30–40c 64

Yellowstone, WY, MT, ID 600f 567

Current population estimates were taken from government sources in British Columbia and the US and predicted population sizes were derived using our top coastal or
interior model.
a[92].
b[68].
c[93].
dC. Servheen, USFWS, Montana, pers. com.
e[64].
f[67].
doi:10.1371/journal.pone.0082757.t007
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appear to have annual kill rates higher than that allowed by policy

(6%). A further 15 units that had predicted densities of zero had

.2 reported bear kills annually during the past 8 years. This level

of kill suggests a resident population. However, many of these units

were predicted to have small populations. The above results could

be due to model imprecision and mortality would need to be

managed at larger scales to reduce this problem, as is currently

done in BC. Management responses to this new information must

occur on a unit by unit basis and incorporate other information

such as local knowledge about distribution and movement among

units; major food sources, such as salmon runs; hunter success; age

and sex ratio of past kill; trend in kill numbers; and the trend and

distribution of problem occurrences. We asked all regional

population managers to evaluate the model predictions against

all available data independent to the modeling process (Table 8). If

the evaluation criteria suggested the model prediction was

unrealistically low or high then we encouraged the manager to

interpolate a density from a similar ecosystem. At the provincial

scale, the mean predicted kill rate among wildlife units in British

Columbia was 2.9% for those units that were predicted to support

grizzly bears, which should be sustainable in most populations

[50].

Biological implications of the models
We demonstrate that grizzly bear density is related to general

indices of resources in the environment. Our results suggest that

ultimate factors, such as vegetation biomass and productivity,

vegetation structure, and protein abundance and availability,

influence grizzly bear density across its North American range. We

further show the degree to which density can be reduced by

human influences, other than hunting, although the limiting effect

of competition on density was equivocal. Other research has

demonstrated the link between forage abundance and population

growth in black bear [74,75] and grizzly bear populations

[28,63,76]. The negative effect of humans on grizzly bear

population growth was empirically demonstrated in the latter

two papers. Although the competitive effect of black bears on

grizzly bear population density has been suggested [35] including

potential individual and population level effects [77,78] and, a

potential mechanism described [42], demonstrating this effect on

population density or growth remains elusive.

Our results suggest the plant portion of the bear diet is indexed

by precipitation and NDVI. Precipitation likely indexes plant

productivity whereas NDVI is thought to index plant biomass

[79]. Ruggedness also appears related to density and, although it

was correlated with precipitation (r = 0.73), the PCA analysis

suggested these two variables contrasted in the third eigenvector,

suggesting some level of independence. Ruggedness may index the

increased surface area associated with sloped areas, which should

provide greater plant biomass and increased variation in plant

phenology among microclimatic sites [49]. A wide variety of

studies have found grizzly bears select for more rugged terrain

[11,16,33,49]. Density was negatively related to forest cover and

positively related to herb-shrub cover, presumably because bear

plant foods are more abundant in non-forested areas. Habitat

selection studies have demonstrated avoidance of forested areas by

grizzly bears [33,80]. However an alternative, and not exclusive

hypothesis using our data, is that fewer trees may benefit grizzly

bears by reducing competition with black bears. We could not

isolate these two effects in our analysis.

In coastal areas density increased as the amount of salmon in

the diet increased [28]. Our interior data also provide weak

support for the generality of this observation, because the salmon

presence variable appeared in 6 of the 10 top interior models and

was always positively related to density, even though there was

only a small range of variation in this variable. But, diet fractions

did not necessarily correlate directly with salmon abundance or

availability, especially where bears eat mostly salmon. In coastal

areas where black bears were absent, salmon consumption was

uniformly high (with one exception) and grizzly bear density was

almost an order of magnitude higher than coastal areas where

black bears were present (Table 3). Many observers have suggested

that body size increases with dietary meat (reviewed in [54]) and

although Mowat and Heard [54] showed that body size was

strongly related to the amount of salmon in the diet, it was less

correlated with terrestrial meat (see [28] for similar results).

Regardless of the strength of the relationship between diet and

body size, body size may be a better index of food quality or

abundance than population density. In Alaska, bears in hunted

areas were larger than bears in nearby ecologically similar areas

that were not hunted ([47], see also [81]). We conclude that

salmon availability influences grizzly bear abundance, but this

relationship may be more complex than a simple linear

relationship across the range of the species. Our data suggest a

negative relationship between density and terrestrial meat

availability, which may explain the observation by Mowat and

Heard [54] above, but this observation may also be due to

colinearity with other variables in our model.

Mattson and Merrill [56] and many others reported that human

density negatively influences grizzly bear density and that grizzly

bears cannot exist at a human density .7/km2. Our data

generally support this hypothesis; only 1 of 101 occupied areas had

human density .7/km2 and this study area straddled a heavily

settled valley, but did not sample a great deal of the less settled

mountains on either side of the valley. Mattson and Merrill [56]

showed that the probability of grizzly bear persistence was

inversely related to cattle density; similar to our findings that

density was inversely related to livestock numbers.

Reported human-caused mortality explained relatively little of

the variation in density when other factors were accounted for.

Our data did not suggest a non-linear relationship between density

and kill rate, as would be expected based on current theories of

population growth [82,83]. This was not too surprising given that

most kill rates in our dataset were low. Low kill rates may cause

little reduction in population size, especially when mostly males

are killed. It has been suggested that grizzly bear populations show

high compensatory responses only near ecological carrying

capacity [84]. Hunter kill may also have been compensated for

by immigration. Lags in the local impact of mortality due to

immigration would confound comparisons of instantaneous

measures of density and kill rate. Immigration sustained harvest

has been observed in Eurasian brown bears where male-biased

harvests may have indicated high immigration rates [85].

Similarly, populations that were reduced due to human-caused

mortality, but have not recovered for various demographic

reasons, would also confound the instantaneous comparison of

density and kill rate, as discussed earlier. Human or livestock

density may have accounted for some of the influence mortality

had on density, but this was likely small, because correlations were

weak between these variables in both datasets (r,0.07). Human

and livestock density may be correlated with unreported human-

caused mortality, however.

Alternative methods for predicting grizzly bear density
Our approach to predicting density differs from most previous

attempts that have usually been based on bear distribution or

movement data and applied a use-versus-availability analysis

approach [86]. This approach has been applied several times using
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radiotelemetry data from individual grizzly bears [10] or detection

data [11,65,73,80]. Although these studies used rigorous analysis

techniques, often accounting for multiple scales and contrasting

the importance of many different variables, the model structures

appear unique to the landscape of origin and the authors were

careful not to extrapolate the models much beyond the original

study area which were roughly the size of one grizzly bear

management unit in BC. Many models of this scale would be

needed to predict density for BC. All final models included

abstract landcover measures, such as elevation or greenness, that

likely had complex relationships with other variables and with

density, makings these types of models difficult to interpret in a

functional sense.

In contrast we followed a more functional approach using

measures of grizzly bear density at the landscape scale as

the dependent variable rather the presence or abundance of

individuals at a site. Density combines all the factors that

influence population dynamics in a single measure and should

be independent of factors such as individual behaviour which

influence the outcome of finer scale analyses. Our analysis

was unaffected by the relative abundance or availability of

different resources within a study area that can limit

predictions of an RSF model [17]. We consider the scale of

our approach more appropriate than behavior-based models,

because our dependent variable was measured at a similar scale to

which we hope to make predictions [87] and, our model

incorporated data across the entire area we intended to make

predictions.

Model weaknesses and improvements
Perhaps the largest weakness of our coastal model are the

salmon diet data. This was a key variable, but it was extracted

from a diet surface constructed from 81 diet measures across

northwest North America, and many fewer along the coast. We

augmented extracted data with local diet data where they were

available, but this was sporadic. Perhaps the most important

influence of the diet data on outcome was in deciding whether

prediction areas were coastal or interior. The main information we

used for this was the salmon diet data and when these were not

available we used local knowledge though this was incomplete.

Finer scale diet measures should improve the models and their

application.

The variables driving our model were largely static. A dynamic

model would require annual databases for each variable, such that

every variable would be an appropriate multiannual mean pre-

dating each survey. This would require vastly more digital data

and the elimination of much early bear density data, because most

databases begin in the 1980’s or later. An effort of this level should

also attempt to document human use of the landscape via a

dynamic measure of road abundance and distribution; this too

would require annual road layers for the past and the future. For

its current application, it is crucial that local practitioners of the

model understand its limitations so they understand where model

predictions are least certain.

We were unable to index the availability of terrestrial meat and

the correlation between precipitation and terrestrial meat in the

diet (r = 20.63) undermined our ability to evaluate this factor

using diet proportions. Also, the correlation of these two variables

with tree cover (rprecip = 0.33, rmeat = 20.35) negated a controlled

evaluation of the importance of competition with black bears

(ignoring the question as to whether the tree cover variable was a

reasonable index of competition). The availability of salmon was

not correlated to other independent variables, but salmon was not

a major contributor to diet in the interior. In the coastal model the

salmon diet proportions were quite variable and appeared sensitive

to changes in salmon availability [54,55].

We were unable, at the scale we worked at, to index key

vegetative foods like berries. Huckleberries (Vaccinium membrana-

ceum) are a key food in most wetter environs and this resource is

linked to natural burns [88]. We could not find data to index

huckleberry abundance directly, nor could we find digital data that

documented burn history at the scale of the continent.

Density estimates may vary with the size of the area over which

they were measured [89,90] but we believe we avoided this issue

by selecting estimates based over large areas (Tables 3–4).

There were weak negative relationships between density and

area (r,20.59) in all 3 datasets, but we believe this is explained

by the need to have larger study areas in lower density

populations in order to meet sample size requirements. The

data we used were not subject to publication bias, a potential

Table 8. Criteria used to evaluate individual model predictions that were independent of the model process.

Evaluation data required Evaluation reasoning Evaluation outcome

Anecdotal data including the locations
where bears were sighted

If the distribution or number of bears people
see is increasing this suggests an increasing
population

Sightings of sows with cubs suggest the unit is occupied; distributional
changes suggest corresponding changes in bear numbers; increased
sightings suggest an increasing population

Locations where bears were killed or
conflicted with people

The distribution of conflict or kill locations
over time may suggest expanding, static or
contracting bear distribution

Conflicts with sows and cubs suggest the unit is occupied; distributional
changes suggest corresponding changes in bear numbers; increased
conflicts suggest the population is increasing

Absolute ages of dead bears (from all
human caused mortality)

Females older than 7 years are likely residents
because they are unlikely to emigrate from
their home range

Presence of resident bears suggests the unit is occupied; older median
age at mortality of males suggests a lower kill rate

Age by sex of bears in the hunter kill Trend in median age suggests a population
trend

Decreasing age of males or increasing age of females may signal a
declining population

Hunter success rates Trend in success suggests a population trend Higher success rates may indicate an increasing population

Proportion of females in the hunter kill Trend in female proportion suggest a
population trend

Increasing proportion of females suggests a declining male population

These criteria can be used to confirm residency, to identify suspect predictions, evaluate a predicted level of harvest, or help decide what level of harvest to allow.
doi:10.1371/journal.pone.0082757.t008
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meta-analysis problem, because we used both published and

unpublished data.

Supporting Information

Appendix S1 Supporting tables.
(DOC)

Appendix S2 Raw data.
(XLS)

Figure S1 Model averaging for the interior data. Model-

averaged predicted grizzly bear densities compared to predictions

from the top model in Table 4. Data included 76 inventoried study

areas and 14 unoccupied areas across the interior of western North

America.

(TIF)

Figure S2 Model averaging for the coastal data. Model-

averaged predicted grizzly bear densities compared to predictions

from the top model in Table 5. Data included 15 inventoried study

areas and 2 unoccupied areas across the interior of western North

America.

(TIF)
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